Locally specified credal networks

Authors: Alessandro Antonucci and Marco Zaffalon

Abstract: Credal networks are models that extend Bayesian nets to deal with imprecision in probability, and can actually be regarded as sets of Bayesian nets. Evidence suggests that credal nets are a powerful means to represent and deal with many important and challenging problems in uncertain reasoning. We give examples to show that some of these problems can only be modelled by credal nets called non-separately specified. These, however, are still missing a graphical representation language and solution algorithms. The situation is quite the opposite with separately specified credal nets, which have been the subject of much study and algorithmic development. This paper gives two major contributions. First, it delivers a new graphical language to formulate any type of credal network, both separately and non-separately specified. Second, it shows that any non-separately specified net represented with the new language can be easily transformed into an equivalent separately specified net, defined over a larger domain. This result opens up a number of new perspectives and concrete outcomes: first of all, it immediately enables the existing algorithms for separately specified credal nets to be applied to non-separately specified ones.

Year: 2006.

Details: In Studený, M. and Vomlel, J. (Eds.), PGM'06: Proceedings of the third European Workshop on Probabilistic Graphical Models. Action M Agency, pp. 25-34.

A version similar to the published paper can be downloaded.