Credal Sets Approximation by Lower Probabilities: Application to Credal Networks


Authors: Alessandro Antonucci and Fabio Cuzzolin

Abstract: Credal sets are closed convex sets of probability mass functions. The lower probabilities specified by a credal set for each element of the power set can be used as constraints defining a second credal set. This simple procedure produces an outer approximation, with a bounded number of extreme points, for general credal sets. The approximation is optimal in the sense that no other lower probabilities can specify smaller supersets of the original credal set. Notably, in order to be computed, the approximation does not need the extreme points of the credal set, but only its lower probabilities. This makes the approximation particularly suited for credal networks, which are a generalization of Bayesian networks based on credal sets. Although most of the algorithms for credal networks updating only return lower posterior probabilities, the suggested approximation can be used to evaluate (as an outer approximation of) the posterior credal set. This makes it possible to adopt more sophisticated decision making criteria, without having to replace existing algorithms. The quality of the approximation is investigated by numerical tests.

Year: 2010.

Details: In Hüllermeier, E. and Kruse, R. and Hoffmann, F. (Eds.), Computational Intelligence for Knowledge-Based Systems Design, 13th International Conference on Information Processing and Management of Uncertainty, IPMU 2010, Dortmund, Germany, June 28 - July 2, 2010. Proceedings. Springer, pp. 716-725.

A version similar to the published paper can be downloaded.