D. Ciresan, U. Meier, J. Masci, J. Schmidhuber - Multi Column Deep Neural Network for Traffic Sign Classification (invited, Neural Networks 2012, bib, paper, http://dx.doi.org/10.1016/j.neunet.2012.02.023)
D. Ciresan, U. Meier, L. M. Gambardella, J. Schmidhuber - Deep, Big, Simple Neural Nets for Handwritten Digit Recognition (Neural Computation, December 2010, bib, paper)
Book chapters:
D. C. Ciresan, U. Meier, L. M. Gambardella, J. Schmidhuber - Deep Big Multilayer Perceptrons For Digit Recognition (Neural Networks Tricks of the Trade, Springer, 2012, bib, preview)
Conference papers:
2013
NEW! D. Ciresan, A. Giusti, L.M. Gambardella, J. Schmidhuber - Mitosis Detection in Breast Cancer Histology Images using Deep Neural Networks (accepted at MICCAI 2013, bib, paper preview)
A. Giusti, D. Ciresan, J. Masci, L.M. Gambardella, J. Schmidhuber - Fast Image Scanning with Deep Max-Pooling Convolutional Neural Networks (accepted at ICIP 2013, bib, paper preview)
J. Masci, A. Giusti, D. Ciresan, G. Fricout, J. Schmidhuber - A Fast Learning Algorithm for Image Segmentation with Max-Pooling Convolutional Networks (accepted at ICIP 2013, bib, paper preview)
2012
D. Ciresan, A. Giusti, L. M. Gambardella, J. Schmidhuber - Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images (NIPS 2012, bib, paper, poster, results)
D. Ciresan, U. Meier, J. Schmidhuber - Transfer Learning for Latin and Chinese Characters with Deep Neural Networks (IJCNN 2012, bib, paper)
J. Masci, U. Meier, D. Ciresan, J. Schmidhuber - Steel Defect Classification with Max-Pooling Convolutional Neural Networks (IJCNN 2012, bib, paper)
2011
D. Ciresan, U. Meier, L. M. Gambardella, J. Schmidhuber - Convolutional Neural Network Committees For Handwritten Character Classification (ICDAR 2011, bib, paper)
U. Meier, D. Ciresan, L. M. Gambardella, J. Schmidhuber - Better digit recognition with a committee of simple Neural Nets (ICDAR 2011, bib, paper)
D. Ciresan, U. Meier, J. Masci, L. M. Gambardella, J. Schmidhuber - Flexible, High Performance Convolutional Neural Networks for Image Classification (IJCAI 2011, bib, paper, slides, poster, video)
D. Ciresan, U. Meier, J. Masci, J. Schmidhuber - A Committee of Neural Networks for Traffic Sign Classification (IJCNN 2011, bib, paper, conference slides, workshop slides)
J. Masci, U. Meier, D. Ciresan, J. Schmidhuber - Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction (ICANN 2011, bib, paper, slides)
J. Schmidhuber, D. Ciresan, U. Meier, J. Masci, Alex Graves - On Fast Deep Nets for AGI Vision (AGI 2011, bib, paper, talk)
J. Nagi, F. Ducatelle, G. A. Di Caro, D. Ciresan, U. Meier, A. Giusti, F. Nagi, J. Schmidhuber, L. M. Gambardella - Max-Pooling Convolutional Neural Networks for Vision-based Hand Gesture Recognition (ICSIPA 2011, bib, paper)
2008
D. Ciresan - Avoiding Segmentation in Multi-Digit Numeral String Recognition by Combining Single and Two-Digit Classifiers Trained without Negative Examples (SYNASC 2008, bib, paper)
D. Ciresan, D. Pescaru - Off-line Recognition of Handwritten Numeral Strings Composed from Two-digits Partially Overlapped Using Convolutional Neural Networks (ICCP 2008)
Workshop papers:
D. Ciresan, A. Giusti, L. Gambardella, J. Schmidhuber - Neural Networks for Segmenting Neuronal Structures in EM Stacks (ISBI CH2 2012, bib, paper. Please cite the detailed NIPS 2012 paper)
First place at The German Traffic Sign Recognition Benchmark (both phases) at IJCNN 2011 (with Ueli Meier and Jonathan Masci). We were the only team with better than human performance.
Department of Brain and Cognitive Sciences, MIT, Boston, June 2012
Janelia Farm, HHMI, Ashburn, June 2012
Deepmind, London, December 2012
Current project
Supervised Deep / Recurrent Nets, SNF grant 140399
Advisor: Juergen Schmidhuber
Past projects
Swiss CTI, Commission for Technology and Innovation, Project n. 9688.1 IFF: Intelligent Fill in Form (2009-2010)
Neural Dynamics, EU project
Current work
using NNs to solve computer vision tasks in robotics, medicine, general 3D scene understanding
connectomics
visual data mining
improving the GPU NN framework