next up previous
Next: About this document ... Up: Feature extraction through LOCOCODE Previous: ACKNOWLEDGMENTS

Bibliography

1
S. Amari, A. Cichocki, and H.H. Yang.
A new learning algorithm for blind signal separation.
In David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors, Advances in Neural Information Processing Systems, volume 8. The MIT Press, Cambridge, MA, 1996.

2
P. Baldi and K. Hornik.
Neural networks and principal component analysis: Learning from examples without local minima.
Neural Networks, 2:53-58, 1989.

3
H. B. Barlow.
Understanding natural vision.
Springer-Verlag, Berlin, 1983.

4
H. B. Barlow, T. P. Kaushal, and G. J. Mitchison.
Finding minimum entropy codes.
Neural Computation, 1(3):412-423, 1989.

5
H. G. Barrow.
Learning receptive fields.
In Proceedings of the IEEE 1st Annual Conference on Neural Networks, volume IV, pages 115-121. IEEE, 1987.

6
M. Baumgartner.
Bilddatenvorverarbeitung mit neuronalen Netzen, 1996.
Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München.

7
S. Becker.
Unsupervised learning procedures for neural networks.
International Journal of Neural Systems, 2(1 & 2):17-33, 1991.

8
A. J. Bell and T. J. Sejnowski.
An information-maximization approach to blind separation and blind deconvolution.
Neural Computation, 7(6):1129-1159, 1995.

9
J.-F. Cardoso and A. Souloumiac.
Blind beamforming for non Gaussian signals.
IEE Proceedings-F, 140(6):362-370, 1993.

10
P. Comon.
Independent component analysis - a new concept?
Signal Processing, 36(3):287-314, 1994.

11
P. Dayan and R. Zemel.
Competition and multiple cause models.
Neural Computation, 7:565-579, 1995.

12
G. Deco and W. Brauer.
Nonlinear higher-order statistical decorrelation by volume-conserving neur al architectures.
Neural Networks, 8(4):525-535, 1995.

13
G. Deco and L. Parra.
Nonlinear features extraction by unsupervised redundancy reduction with a stochastic neural network.
Technical Report ZFE ST SN 41, Siemens AG, 1994.

14
D. DeMers and G. Cottrell.
Non-linear dimensionality reduction.
In Stephen José Hanson, Jack D. Cowan, and C. Lee Giles, editors, Advances in Neural Information Processing Systems 5, pages 580-587. Morgan Kaufmann, San Mateo, CA, 1993.

15
B. A. Olshausen; D. J. Field.
Emergence of simple-cell receptive field properties by learning a sparse code for natural images.
Nature, 381(6583):607-609, 1996.

16
D. J. Field.
Relations between the statistics of natural images and the response properties of cortical cells.
Journal of the Optical Society of America, 4:2379-2394, 1987.

17
D. J. Field.
What is the goal of sensory coding?
Neural Computation, 6:559-601, 1994.

18
G. W. Flake.
Square unit augmented, radially extended, multilayer perceptrons.
In G. B. Orr and K.-R. Müller, editors, Tricks of the Trade. Springer Verlag, Berlin, 1998.
To appear in Lecture Notes in Computer Science.

19
P. Földiák.
Forming sparse representations by local anti-Hebbian learning.
Biological Cybernetics, 64:165-170, 1990.

20
P. Földiák and M. P. Young.
Sparse coding in the primate cortex.
In M. A. Arbib, editor, The Handbook of Brain Theory and Neural Networks, pages 895-898. The MIT Press, Cambridge, Massachusetts, 1995.

21
Z. Ghahramani.
Factorial learning and the EM algorithm.
In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural Information Processing Systems 7, pages 617-624. MIT Press, Cambridge MA, 1995.

22
B. Hassibi and D. G. Stork.
Second order derivatives for network pruning: Optimal brain surgeon.
In D. S. Lippman, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems 5, pages 164-171. San Mateo, CA: Morgan Kaufmann, 1993.

23
T. J. Hastie and R. J. Tibshirani.
Discriminant adaptive nearest neighbor classification.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(6):607-616, 1996.

24
T. J. Hastie, R. J. Tibshirani, and A. Buja.
Flexible discriminant analysis by optimal scoring.
Technical report, AT&T Bell Laboratories, 1993.

25
M. Herrmann.
On the merits of topography in neural maps.
In T. Kohonen, editor, Proceedings of the Workshop on Self-Organizing Maps, pages 112-117. Helsinki University of Technology, 1997.

26
G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal.
The wake-sleep algorithm for unsupervised neural networks.
Science, 268:1158-1160, 1995.

27
G. E. Hinton and Z. Ghahramani.
Generative models for discovering sparse distributed representations.
Philosophical Transactions of the Royal Society B, 352:1177-1190, 1997.

28
G. E. Hinton and R. S. Zemel.
Autoencoders, minimum description length and Helmholtz free energy.
In J. D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural Information Processing Systems 6, pages 3-10. Morgan Kaufmann, San Mateo, CA, 1994.

29
S. Hochreiter and J. Schmidhuber.
Simplifying neural nets by discovering flat minima.
In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Neural Information Processing Systems 7, pages 529-536. MIT Press, Cambridge MA, 1995.

30
S. Hochreiter and J. Schmidhuber.
Flat minima.
Neural Computation, 9(1):1-42, 1997.

31
S. Hochreiter and J. Schmidhuber.
Low-complexity coding and decoding.
In K. M. Wong, I. King, and D. Yeung, editors, Theoretical Aspects of Neural Computation, pages 297-306. Springer, 1997.

32
S. Hochreiter and J. Schmidhuber.
Unsupervised coding with LOCOCODE.
In W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud, editors, Proceedings of the International Conference on Artificial Neural Networks, Lausanne, Switzerland, pages 655-660. Springer, 1997.

33
S. Hochreiter and J. Schmidhuber.
Lococode versus PCA and ICA.
In L. Niklasson, M. Boden, and T. Ziemke, editors, Proceedings of the International Conference on Artificial Neural Networks, Skövde, Sweden, pages 669-674. Springer, 1998.

34
C. Jutten and J. Herault.
Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture.
Signal Processing, 24(1):1-10, 1991.

35
T. Kohonen.
Self-Organization and Associative Memory.
Springer, second edition, 1988.

36
M. Kramer.
Nonlinear principal component analysis using autoassociative neural networks.
AIChE Journal, 37:233-243, 1991.

37
Z. Li.
A theory of the visual motion coding in the primary visual cortex.
Neural Computation, 8(4):705-730, 1995.

38
R. Linsker.
Self-organization in a perceptual network.
IEEE Computer, 21:105-117, 1988.

39
L. Molgedey and H. G. Schuster.
Separation of independent signals using time-delayed correlations.
Phys. Reviews Letters, 72(23):3634-3637, 1994.

40
M. C. Mozer.
Discovering discrete distributed representations with iterative competitive learning.
In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems 3, pages 627-634. San Mateo, CA: Morgan Kaufmann, 1991.

41
J.-P. Nadal and N. Parga.
Redundancy reduction and independent component analysis: Conditions on cumulants and adaptive approaches.
Neural Computation, 9(7):1421-1456, 1997.

42
E. Oja.
Neural networks, principal components, and subspaces.
International Journal of Neural Systems, 1(1):61-68, 1989.

43
E. Oja.
Data compression, feature extraction, and autoassociation in feedforward neural networks.
In T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas, editors, Artificial Neural Networks, volume 1, pages 737-745. Elsevier Science Publishers B.V., North-Holland, 1991.

44
P. Pajunen.
Blind source separation using algorithmic information theory.
In C. Fyfe, editor, Proceedings of Independence and Artificial Neural Networks (I & ANN), pages 26-31. ICSC Academic Press, 1998.

45
G. Palm.
On the information storage capacity of local learning rules.
Neural Computation, 4(2):703-711, 1992.

46
A. N. Redlich.
Redundancy reduction as a strategy for unsupervised learning.
Neural Computation, 5:289-304, 1993.

47
J. Rissanen.
Modeling by shortest data description.
Automatica, 14:465-471, 1978.

48
A. J. Robinson.
Dynamic Error Propagation Networks.
PhD thesis, Trinity Hall and Cambridge University Engineering Department, 1989.

49
D. E. Rumelhart and D. Zipser.
Feature discovery by competitive learning.
In Parallel Distributed Processing, pages 151-193. MIT Press, 1986.

50
E. Saund.
Unsupervised learning of mixtures of multiple causes in binary data.
In J. D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural Information Processing Systems 6, pages 27-34. Morgan Kaufmann, San Mateo, CA, 1994.

51
E. Saund.
A multiple cause mixture model for unsupervised learning.
Neural Computation, 1995.

52
J. Schmidhuber.
Learning factorial codes by predictability minimization.
Neural Computation, 4(6):863-879, 1992.

53
J. Schmidhuber.
Discovering neural nets with low Kolmogorov complexity and high generalization capability.
Neural Networks, 10(5):857-873, 1997.

54
J. Schmidhuber.
Low-complexity art.
Leonardo, Journal of the International Society for the Arts, Sciences, and Technology, 30(2):97-103, 1997.

55
J. Schmidhuber, M. Eldracher, and B. Foltin.
Semilinear predictability minimization produces well-known feature detectors.
Neural Computation, 8(4):773-786, 1996.

56
J. Schmidhuber and D. Prelinger.
Discovering predictable classifications.
Neural Computation, 5(4):625-635, 1993.

57
N. Schraudolph and T. J. Sejnowski.
Unsupervised discrimination of clustered data via optimization of binary information gain.
In Stephen José Hanson, Jack D. Cowan, and C. Lee Giles, editors, Advances in Neural Information Processing Systems, volume 5, pages 499-506. Morgan Kaufmann, San Mateo, 1993.

58
N. N. Schraudolph.
On centering neural network weight updates.
In G. B. Orr and K.-R. Müller, editors, Tricks of the Trade. Springer Verlag, Berlin, 1998.
To appear in Lecture Notes in Computer Science.

59
R.J. Solomonoff.
A formal theory of inductive inference. Part I.
Information and Control, 7:1-22, 1964.

60
J. B. Tenenbaum and W. T. Freeman.
Separating style and content.
In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 662-668. The MIT Press, Cambridge, MA, 1997.

61
P. D. Turney.
Exploiting context when learning to classify.
In Proceedings of the European Conference on Machine Learning, pages 402-407, 1993.
ftp://ai.iit.nrc.ca/pub/ksl-papers/NRC-35058.ps.Z.

62
C. S. Wallace and D. M. Boulton.
An information theoretic measure for classification.
Computer Journal, 11(2):185-194, 1968.

63
S. Watanabe.
Pattern Recognition: Human and Mechanical.
Willey, New York, 1985.

64
R. S. Zemel.
A minimum description length framework for unsupervised learning.
PhD thesis, University of Toronto, 1993.

65
R. S. Zemel and G. E. Hinton.
Developing population codes by minimizing description length.
In J. D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural Information Processing Systems 6, pages 11-18. San Mateo, CA: Morgan Kaufmann, 1994.



Juergen Schmidhuber 2003-02-13


Back to Independent Component Analysis page.