next up previous
Next: About this document ... Up: LEARNING UNAMBIGUOUS REDUCED SEQUENCE Previous: ACKNOWLEDGEMENTS

Bibliography

1
U. Bodenhausen and A. Waibel.
The tempo 2 algorithm: Adjusting time-delays by supervised learning.
In D. S. Lippman, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems 3, pages 155-161. Morgan Kaufmann, 1991.

2
J. L. Elman.
Finding structure in time.
Technical Report CRL Technical Report 8801, Center for Research in Language, University of California, San Diego, 1988.

3
M. Gherrity.
A learning algorithm for analog fully recurrent neural networks.
In IEEE/INNS International Joint Conference on Neural Networks, San Diego, volume 1, pages 643-644, 1989.

4
C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and Y. C. Lee.
Learning and extracting finite state automata with second-order recurrent neural networks.
Neural Computation, 4:393-405, 1992.

5
S. Hochreiter.
Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München, 1991.
See www7.informatik.tu-muenchen.de/~hochreit.

6
M. I. Jordan.
Serial order: A parallel distributed processing approach.
Technical Report ICS Report 8604, Institute for Cognitive Science, University of California, San Diego, 1986.

7
G. Lukes.
Review of Schmidhuber's paper `Recurrent networks adjusted by adaptive critics'.
Neural Network Reviews, 4(1):41-42, 1990.

8
Y. Miyata.
An unsupervised PDP learning model for action planning.
In Proc. of the Tenth Annual Conference of the Cognitive Science Society, Hillsdale, NJ, pages 223-229. Erlbaum, 1988.

9
M. C. Mozer.
A focused back-propagation algorithm for temporal sequence recognition.
Complex Systems, 3:349-381, 1989.

10
M. C. Mozer.
Connectionist music composition based on melodic, stylistic, and psychophysical constraints.
Technical Report CU-CS-495-90, University of Colorado at Boulder, 1990.

11
B. A. Pearlmutter.
Learning state space trajectories in recurrent neural networks.
Neural Computation, 1(2):263-269, 1989.

12
F. J. Pineda.
Time dependent adaptive neural networks.
In D. S. Touretzky, editor, Advances in Neural Information Processing Systems 2, pages 710-718. Morgan Kaufmann, 1990.

13
J. B. Pollack.
Recursive distributed representation.
Artificial Intelligence, 46:77-105, 1990.

14
A. J. Robinson and F. Fallside.
The utility driven dynamic error propagation network.
Technical Report CUED/F-INFENG/TR.1, Cambridge University Engineering Department, 1987.

15
R. Rohwer.
The `moving targets' training method.
In J. Kindermann and A. Linden, editors, Proceedings of `Distributed Adaptive Neural Information Processing', St.Augustin, 24.-25.5,. Oldenbourg, 1989.

16
D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning internal representations by error propagation.
In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing, volume 1, pages 318-362. MIT Press, 1986.

17
J. Schmidhuber.
A local learning algorithm for dynamic feedforward and recurrent networks.
Connection Science, 1(4):403-412, 1989.

18
J. Schmidhuber.
Recurrent networks adjusted by adaptive critics.
In Proc. IEEE/INNS International Joint Conference on Neural Networks, Washington, D. C., volume 1, pages 719-722, 1990.

19
J. Schmidhuber.
Adaptive decomposition of time.
In T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas, editors, Artificial Neural Networks, pages 909-914. Elsevier Science Publishers B.V., North-Holland, 1991.

20
J. Schmidhuber.
A fixed size storage $O(n^3)$ time complexity learning algorithm for fully recurrent continually running networks.
Neural Computation, 4(2):243-248, 1992.

21
J. Schmidhuber.
Learning complex, extended sequences using the principle of history compression.
Neural Computation, 4(2):234-242, 1992.

22
J. Schmidhuber.
Learning to control fast-weight memories: An alternative to recurrent nets.
Neural Computation, 4(1):131-139, 1992.

23
C. E. Shannon.
A mathematical theory of communication (parts I and II).
Bell System Technical Journal, XXVII:379-423, 1948.

24
P. J. Werbos.
Generalization of backpropagation with application to a recurrent gas market model.
Neural Networks, 1, 1988.

25
R. J. Williams.
Toward a theory of reinforcement-learning connectionist systems.
Technical Report NU-CCS-88-3, College of Comp. Sci., Northeastern University, Boston, MA, 1988.

26
R. J. Williams and J. Peng.
An efficient gradient-based algorithm for on-line training of recurrent network trajectories.
Neural Computation, 4:491-501, 1990.

27
R. J. Williams and D. Zipser.
Experimental analysis of the real-time recurrent learning algorithm.
Connection Science, 1(1):87-111, 1989.


Juergen Schmidhuber 2003-02-25


Back to Recurrent Neural Networks page