Next: About this document ...
Up: LEARNING UNAMBIGUOUS REDUCED SEQUENCE
Previous: ACKNOWLEDGEMENTS
- 1
-
U. Bodenhausen and A. Waibel.
The tempo 2 algorithm: Adjusting time-delays by supervised learning.
In D. S. Lippman, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems 3, pages 155-161. Morgan
Kaufmann, 1991.
- 2
-
J. L. Elman.
Finding structure in time.
Technical Report CRL Technical Report 8801, Center for Research in
Language, University of California, San Diego, 1988.
- 3
-
M. Gherrity.
A learning algorithm for analog fully recurrent neural networks.
In IEEE/INNS International Joint Conference on Neural Networks,
San Diego, volume 1, pages 643-644, 1989.
- 4
-
C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and Y. C. Lee.
Learning and extracting finite state automata with second-order
recurrent neural networks.
Neural Computation, 4:393-405, 1992.
- 5
-
S. Hochreiter.
Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis,
Institut für Informatik, Lehrstuhl Prof. Brauer, Technische
Universität München, 1991.
See www7.informatik.tu-muenchen.de/~hochreit.
- 6
-
M. I. Jordan.
Serial order: A parallel distributed processing approach.
Technical Report ICS Report 8604, Institute for Cognitive Science,
University of California, San Diego, 1986.
- 7
-
G. Lukes.
Review of Schmidhuber's paper `Recurrent networks adjusted by
adaptive critics'.
Neural Network Reviews, 4(1):41-42, 1990.
- 8
-
Y. Miyata.
An unsupervised PDP learning model for action planning.
In Proc. of the Tenth Annual Conference of the Cognitive Science
Society, Hillsdale, NJ, pages 223-229. Erlbaum, 1988.
- 9
-
M. C. Mozer.
A focused back-propagation algorithm for temporal sequence
recognition.
Complex Systems, 3:349-381, 1989.
- 10
-
M. C. Mozer.
Connectionist music composition based on melodic, stylistic, and
psychophysical constraints.
Technical Report CU-CS-495-90, University of Colorado at Boulder,
1990.
- 11
-
B. A. Pearlmutter.
Learning state space trajectories in recurrent neural networks.
Neural Computation, 1(2):263-269, 1989.
- 12
-
F. J. Pineda.
Time dependent adaptive neural networks.
In D. S. Touretzky, editor, Advances in Neural Information
Processing Systems 2, pages 710-718. Morgan Kaufmann, 1990.
- 13
-
J. B. Pollack.
Recursive distributed representation.
Artificial Intelligence, 46:77-105, 1990.
- 14
-
A. J. Robinson and F. Fallside.
The utility driven dynamic error propagation network.
Technical Report CUED/F-INFENG/TR.1, Cambridge University Engineering
Department, 1987.
- 15
-
R. Rohwer.
The `moving targets' training method.
In J. Kindermann and A. Linden, editors, Proceedings of
`Distributed Adaptive Neural Information Processing', St.Augustin,
24.-25.5,. Oldenbourg, 1989.
- 16
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning internal representations by error propagation.
In D. E. Rumelhart and J. L. McClelland, editors, Parallel
Distributed Processing, volume 1, pages 318-362. MIT Press, 1986.
- 17
-
J. Schmidhuber.
A local learning algorithm for dynamic feedforward and recurrent
networks.
Connection Science, 1(4):403-412, 1989.
- 18
-
J. Schmidhuber.
Recurrent networks adjusted by adaptive critics.
In Proc. IEEE/INNS International Joint Conference on Neural
Networks, Washington, D. C., volume 1, pages 719-722, 1990.
- 19
-
J. Schmidhuber.
Adaptive decomposition of time.
In T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas, editors,
Artificial Neural Networks, pages 909-914. Elsevier Science Publishers
B.V., North-Holland, 1991.
- 20
-
J. Schmidhuber.
A fixed size storage
time complexity learning algorithm
for fully recurrent continually running networks.
Neural Computation, 4(2):243-248, 1992.
- 21
-
J. Schmidhuber.
Learning complex, extended sequences using the principle of history
compression.
Neural Computation, 4(2):234-242, 1992.
- 22
-
J. Schmidhuber.
Learning to control fast-weight memories: An alternative to recurrent
nets.
Neural Computation, 4(1):131-139, 1992.
- 23
-
C. E. Shannon.
A mathematical theory of communication (parts I and II).
Bell System Technical Journal, XXVII:379-423, 1948.
- 24
-
P. J. Werbos.
Generalization of backpropagation with application to a recurrent gas
market model.
Neural Networks, 1, 1988.
- 25
-
R. J. Williams.
Toward a theory of reinforcement-learning connectionist systems.
Technical Report NU-CCS-88-3, College of Comp. Sci., Northeastern
University, Boston, MA, 1988.
- 26
-
R. J. Williams and J. Peng.
An efficient gradient-based algorithm for on-line training of
recurrent network trajectories.
Neural Computation, 4:491-501, 1990.
- 27
-
R. J. Williams and D. Zipser.
Experimental analysis of the real-time recurrent learning algorithm.
Connection Science, 1(1):87-111, 1989.
Juergen Schmidhuber
2003-02-25
Back to Recurrent Neural Networks page